Programmatically interpretable reinforcement learning

Programmatically interpretable reinforcement learning, Verma et al., ICML 2018 Being able to trust (interpret, verify) a controller learned through reinforcement learning (RL) is one of the key challenges for real-world deployments of RL that we looked at earlier this week. It's also an essential requirement for agents in human-machine collaborations (i.e, all deployments at some … Continue reading Programmatically interpretable reinforcement learning

Challenges of real-world reinforcement learning

Challenges of real-world reinforcement learning, Dulac-Arnold et al., ICML'19 Last week we looked at some of the challenges inherent in automation and in building systems where humans and software agents collaborate. When we start talking about agents, policies, and modelling the environment, my thoughts naturally turn to reinforcement learning (RL). Today's paper choice sets out … Continue reading Challenges of real-world reinforcement learning

Learning certifiably optimal rule lists for categorical data

Learning certifiably optimal rule lists for categorical data Angelino et al., JMLR 2018 Today we’re taking a closer look at CORELS, the Certifiably Optimal RulE ListS algorithm that we encountered in Rudin’s arguments for interpretable models earlier this week. We’ve been able to create rule lists (decision trees) for a long time, e.g. using CART, … Continue reading Learning certifiably optimal rule lists for categorical data

Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead Rudin et al., arXiv 2019 With thanks to Glyn Normington for pointing out this paper to me. It’s pretty clear from the title alone what Cynthia Rudin would like us to do! The paper is a mix of technical … Continue reading Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

Learning a unified embedding for visual search at Pinterest

Learning a unified embedding for visual search at Pinterest Zhai et al., KDD'19 Last time out we looked at some great lessons from Airbnb as they introduced deep learning into their search system. Today’s paper choice highlights an organisation that has been deploying multiple deep learning models in search (visual search) for a while: Pinterest. … Continue reading Learning a unified embedding for visual search at Pinterest

Applying deep learning to Airbnb search

Applying deep learning to Airbnb search Haldar et al., KDD'19 Last time out we looked at Booking.com’s lessons learned from introducing machine learning to their product stack. Today’s paper takes a look at what happened in Airbnb when they moved from standard machine learning approaches to deep learning. It’s written in a very approachable style … Continue reading Applying deep learning to Airbnb search